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Free expansion of elastic filaments
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~Received 16 May 2001; revised manuscript received 13 July 2001; published 27 November 2001!

The dynamics of an elastic polymer filament undergoing contour length expansion is studied using computer
simulation. The expansion occurs by development of transverse buckling waves that grow through a coarsening
process. The growing buckles locally organize into a helical structure with a characteristic persistence length.
The helical domain boundaries are eliminated from the relaxing structure by unwinding through the ends of the
rod. The growth of the helical domains results in self-propulsive motion of the expanding rod, as one large
helix spanning the entire chain relaxes during the late stages of the dynamics. Stability analyses and scaling
arguments are provided to explain the simulation results.
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I. INTRODUCTION

Many important biological and polymeric systems quick
respond to changes in their surrounding conditions by al
ing their conformations. These conformational adjustme
include volume expansion in response to changes in the
ditions of the solution~pH, temperature, salinity! and volume
compression due to externally applied stress or intramole
lar attraction. For example, anionic hydrogel@1# micro-
spheres respond to changes in pH and salt concentratio
expanding to a swelling ratio of as much as 12. Microge
which respond to these changes much faster than slab
~0.5 seconds versus hours!, are being evaluated as likely can
didates for drug delivery systems because of their small
(;10 mm) and short response time. Similar gel chemistry
employed in the production of nanoscale conduits@2#. Single
nanotubes can be formed from biomembrane vesicles
bonding a substrate to the membrane surface and drawi
stabilized fluid-lipid bilayer. The caliber of the nanomet
scale tube can be experimentally controlled in the range
200 nanometers. The nanotube is stabilized by photoche
cal polymerization of cross-linking monomers contain
within the lipid bilayer, resulting in a cross-linked gel cylin
der of nanometer scale radius and near-millimeter len
When anionic hydrogel chemistry is employed, nanotu
with the capability of expanding their equilibrium lengths a
produced. Nanoscale devices may use the expansion of t
nanotubes for hydrodynamic propulsion or as mechanica
vers, where adjustments in the solution conditions trigger
desired response. Understanding the dynamics of this ex
sion process is important for the design of nanoscale devi
Toward this goal, we simulate and analyze the free expan
of an initially straight elastic rod after a sudden change in
solvent conditions.

A closely related problem of buckling of an elastic fil
ment in a viscous medium under uniaxial compression w
fixed ends has been studied by Golubovicet al. @3#. It was
found that the compression causes a transverse bucklin
stability with a characteristic wavelength. Through bucklin
the compressional strain is reduced by expansion in
transverse direction at the expense of incurring bending
formation. The buckling phenomenon occurs spontaneo
through a symmetry breaking, and the buckled configura
1063-651X/2001/64~6!/061802~10!/$20.00 64 0618
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evolves as a phase ordering process.
The expansion of an elastic filament with free ends afte

sudden change of solvent condition can exhibit a sim
buckling instability to the case of applied external stress w
fixed ends. This conclusion, however, is not obvious, due
the fact that whereas transverse buckling is the only mec
nism to relieve the compressional strain in the case of fi
ends, a rod with free ends has the option of increasing
length through longitudinal expansion. We will identify th
conditions under which longitudinal relaxation dominates
expansion process. Since free expansion through transv
buckling represents a richer and more interesting phen
enon, it will be the focus of our study. Nevertheless, lon
tudinal motion will be shown to have a significant effect o
the dynamics, particularly on the expansion of the major a
of the rod.

We study the expansion dynamics by computer simulat
and by extending previous analyses of the buckling phen
enon of filaments with fixed ends. We focus on the thre
dimensional structure of the dynamic process of expans
The initial instability produces wavelike deformations in th
two transverse directions. As the wavelike buckles gro
they coalesce to form helical structures in order to assum
growing conformation of constant curvature along the ba
bone. Domains of helical orientation spontaneously form d
to statistical deviation of the buckle wavelength from t
most unstable value. The sizes of the helical domains g
as the rod expands, until the rod conformation is domina
by a single helical orientation. The final structure is a pu
helix ~single handedness!; although the system initially lacks
any chiral preference. An interesting consequence of
growth of the helical domains is the phenomenon of se
propulsion@4# of the expanding body throughout the expa
sion process. We present methods for measuring the ave
persistence length of the helical domains and explain th
growth as a dissipative process.

II. ELASTIC ROD MODEL

We consider a thin rod of initial equilibrium lengthL0 and
uniform circular cross-sectional areaA0, made of isotropic
elastic material. At the order of linear elasticity, the deform
tion of the rod can be decomposed into compressi
©2001 The American Physical Society02-1
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A. J. SPAKOWITZ AND Z.-G. WANG PHYSICAL REVIEW E64 061802
expansion, bending, and twist. In this first study, we ign
the twist deformation. In the case of a rod with free en
twist deformation is dissipated out of the unconstrain
body. The resistance to twist dissipation is much smaller t
the resistance to drift motion of the entire rod; therefore,
neglect body rotation and focus on the drift motion of t
chain. The shape of this thin rod is then described by a sp
curver (s) wheres is an internal contour coordinate that ru
from 0 toL0. The linear compression/expansion strain, m
sured with respect to the initial rest lengthL0, is given by

e~s!512U]r

]sU, ~1!

where we have defined the strain to be positive if it cor
sponds to compression. However, we are interested in
dynamic evolution of the rod after a sudden change in
solvent condition causes a change in the equilibrium len
Under the charged condition, the equilibrium length of t
rod becomesL f.L0. The rod at the initial lengthL0 will
now experience a compressional strain with respect to
new equilibrium length. It is therefore more convenient
define a strain with respect to the new equilibrium lengthL f ,

e~s!5g02U]r

]sU, ~2!

where g0[L f /L0 is the swelling ratio in the longitudina
direction.

The strain energy due to compression is then

Ucom5
k̃

2E0

L0
e~s!2ds, ~3!

where k̃ is the compression modulus and is related to
Young’s modulusE of the elastic material byk̃5EA0. We
will ignore the change in the Young’s modulus due to t
expansion of the rod.

The bending energy is due to curvature distortion of
rod from its equilibrium value, which in our case is taken
be zero. For an unstretchable rod model, such as the Kra
Porod wormlike chain model@5,6#, the curvature is simply
]2r /]s2. However, in our case the length of the rod is n
conserved, and curvature is more properly defined
(1/g)]/]s@(1/g)(]r /]s)# whereg(s)5(dr /ds•dr /ds)1/2 re-
lates the true arc length to the backbone internal coordin
The bending energy is then given by

Ubend5
ẽ

2E0

L0S 1

g

]

]s

1

g

]r

]sD
2

ds, ~4!

where the bending modulusẽ is found from the geometry o
a gently bent cylinder to beEA0

2/(4p) @7#.
To numerically solve the dynamic equation of motion, w

discretize the rod intoN11 ‘‘beads’’ with an initial bead
separation ofl 05L0 /N. In this discretized representatio
the compression and bending energies become
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2 , ~5!

whereen5g02(uRn112Rnu l 0) gives the internal strain, and

Ubend5
e

2 (
n51

N21

~ tn112tn!2, ~6!

wheretn5(Rn112Rn)/uRn112Rnu is the unit tangent vec-
tor. The moduli are now given byk5 l 0k̃5El0A0 and e

5 ẽ/ l 05EA0
2/(4p l 0) and have units of energy. We will us

the modulik ande in the subsequent analysis.
We describe the dynamics of the thin rod by an ov

damped Rouse dynamics in a viscous medium@8#. The equa-
tion of motion is

j
]Rn~ t !

]t
52

]U

]Rn
1fn~ t !, ~7!

where j is the friction coefficient of the solvent andfn(t)
represents the random forces due to thermal noise. We
be interested in deformation energies~both bending and
compression! that are large compared to the thermal ener
therefore, we will ignore any randomness except that ass
ated with the initial perturbation. In Sec. IV, we further di
cuss the conditions where thermal fluctuations significan
contribute to the expansion dynamics and justify the neg
of the thermal fluctuations in our study.

Analysis of the equations of motion of the beads yie
two fundamental time scalestcom5j l 0

2/k andtbend5j l 0
2/e,

associated with the location compression and bending re
ation, respectively. An additional time scalet0 associated
with the buckling phenomenon~see Sec. IV! arises from the
expansion dynamics. In order to resolve these fundame
time scales (tcom, tbend, andt0!, the numerical solution of
Eq. ~7! is conducted using timesteps that are small in co
parison. For the parameters that we choose, these three
scales are on the same order of magnitude; therefore,
arbitrarily choose to scale time by the fundamental buckl
time t0.

III. EXPANSION DYNAMICS

Our simulations focus on the dynamics of an initial
straight rod of length 199.0l 0 expanding to a final equilib-
rium length of 298.5l 0 ~50% expansion!. We use a Young’s
modulus of 104 Nm22, representing that of polyethylenegly
col ~400! methacrylate hydrogel@9#. Choosing an initial in-
terbead spacingl 05346.38 nm and radiusR5292.40 nm
results in a compression modulusk59.304310216 J and
bending moduluse51.657310216 J.

We seed the initially straight chain with a small rando
perturbation in the transverse direction of an amplitude
0.01l 0. ~This initial condition does not reflect the tenden
for a chain under thermal fluctuations to favor long wav
length perturbations. We have conducted simulations w
perturbations produced by thermal equilibration of a ch
with the initial interbead spacing, and observe qualitativ
2-2
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FREE EXPANSION OF ELASTIC FILAMENTS PHYSICAL REVIEW E64 061802
similar results to those with random perturbations.! At t50,
the equilibrium interbead separation is suddenly chan
from l 0 to 1.5l 0, and the subsequent evolution of the stru
ture of the chain is followed by numerically integrating E
~7!.

We analyze the dynamics of the expanding chain us
several metrics. The compression and bending energies
calculated from the bead coordinates using Eqs.~5! and ~6!.
The shape of the chain is characterized by the radius
gyration tensorT @10#. The transverse buckling waveleng
is measured by using the slope-slope correlation func
Kss(r ,t) @3#. And finally, the correlation length of the hand
edness of the transverse fluctuation is measured by intro
ing the torsion-torsion correlation functionKtt(r ,t).

A typical set of snapshots of the expanding chain is sho
in Fig. 1. It is clearly seen that an initially straight cha
develops buckling waves and that these waves grow thro
a coarsening process. The organization of the buckling wa
into helices can also be observed.

Upon the development of buckling waves, the compr
sion energy due to the altered equilibrium interbead spac
is partially converted into bending energy. This repartitioni
of energy continues throughout the entire coarsening proc
In Fig. 2, we show the evolution of the two energy contrib

FIG. 1. Snapshots of the chain conformation during the f
expansion process~100 out of the total 200 beads are shown!. We
show conformations at 3.94t0 , 39.4t0 , 394t0, and 3940t0, succes-
sively.
06180
d
-

g
are

f-

n

c-

n

gh
es

-
g

ss.
-

tions during the expansion of the chain. The drop in t
compression energy and sharp rise in the bending en
corresponds to a time when the buckling waves begin
grow significantly. Once the buckling waves are fully deve
oped, both energy contributions decay due to dissipat
Over a broad intermediate time range, the decay of b
contributions follows a power law with exponent21/2 and
21 for the bending and compression energies, respectiv
These features are qualitatively similar to those in the bu
ling dynamics due to compression along a rod with fix
ends, as analyzed in Ref.@3#. The very long time behavior is
the relaxation of a bend with a length scale the size of
entire chain; relaxation of this long wavelength bend sho
be exponential and will be governed by the longest rel
ation time associated with the bending motion. We note t
full relaxation cannot be reached in the case of chains w
fixed ends, and the simulation time in Ref.@3# was not long
enough to reach this terminal regime.

To analyze the shape evolution of the expanding cha
we introduce the radius-of-gyration tensorT, calculated from
the bead coordinatesRn and the center-of-mass coordina
Rc(t)5(n51

N11Rn(t)/(N11):

Ti j ~ t !5
1

N11 (
n51

N11

@Ri ,n~ t !2Ri
c~ t !#@Rj ,n~ t !2Rj

c~ t !#,

~8!

wherei and j denote cartesian componentsx, y, andz, andn
denotes the discrete backbone coordinate. The square
of the three eigenvalues of the tensorT (R1 , R2, and R3)
give a measure of the size of the chain along the major a
x1 and the two minor axesx2 and x3, which are the eigen-
vectors ofT. Figure 3 shows the evolution of the three pri
cipal radii of gyration with time. Since the major radiusR1
starts from a large nonzero initial value, we present data
R1(t)2R1(0). This difference is seen to increase linearly

e

FIG. 2. Bending energyUbend (n), compression energyUcom

(,), and total potential energyU5Ubend1Ucom during the expan-
sion process. The total energy becomes indistinguishable f
Ubend for t/t0.5.
2-3
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A. J. SPAKOWITZ AND Z.-G. WANG PHYSICAL REVIEW E64 061802
first and then turn into a slower square-root power incre
around the time the buckling waves develop. The two mi
radii start at a small value and then rapidly increase when
buckling waves begin to develop. Afterwards, they follow
t1/4 power law growth until eventually dropping back to ze
when the chain is fully relaxed. The small differences inR2
and R3 are due to statistical errors, as these two axes
equivalent.

Following Ref.@3#, we define the slope-slope correlatio
function Kss to calculate the characteristic wavelengthl of
the buckling waves. The transverse slopeVn

T is the projection
of the relative bead positionVn5Rn112Rn onto the tran-
verse axesx2 andx3

Vn
T~ t !5@x2~ t !•Vn~ t !#x21@x3~ t !•Vn~ t !#x3 , ~9!

and the slope-slope correlation function is defined as

FIG. 3. ~a! Expansion dynamics of the major axisDR15R1

2R1(t50). The dashed-dotted curve corresponds to the analy
solution@Eq. ~16!# for the expansion of a rod in one dimension.~b!
Time evolution of the minor axesR2 (n) andR3 (,) during the
expansion process.
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Kss~r ,t !5^Vn1r
T ~ t !•Vn

T~ t !&, ~10!

where the angular brackets refer to a statistical averagin
many runs with different realizations of the initial rando
seeding. For a perfect sinusoidal wave, the functionKss(r ,t)
changes sign twice during one full period inr, the first zero
occurring at one-quarter of the wavelengthl. We therefore
define the characteristic wavelength as four times the va
of r whereKss(r ,t) first becomes zero.

In order to measure the persistence of the handednes
the transverse fluctuationlH , we introduce the torsion-
torsion correlation functionKtt . For a space curve, torsiont
is defined to measure the instantaneous amount that the c
is distorted out of a planar path. Mathematically@11#,

t52n•
db

ds
, ~11!

wheren is the unit normal, which is a measure of the no
malized rate of change of the tangent vectort with respect to
the arc lengths and b is the unit binormal, defined as th
cross product of the tangent vector with the unit normal. T
sign of the torsion determines the handedness of the dis
tion: a right handed distortion generates a positive torsion
left handed distortion generates a negative torsion. T
torsion-torsion correlation function is defined as

Ktt~r ,t !5^tn1r~ t !tn~ t !&. ~12!

This function switches sign at half the correlation length
the helical orientationlH .

In Fig. 4, we show the time evolution of the bucklin
wavelengthl and the helical correlation lengthlH . The
initial random seeding does not favor any particular wa
length. However, after some initial incubation period, t
transverse fluctuation picks up a dominant wave number
responding to a plateau inl(t). Subsequently, the coarsenin

al

FIG. 4. The time evolution of the average wavelength of t
buckled perturbationl (,) and the average persistence length
the buckle handednesslH (n).
2-4
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FREE EXPANSION OF ELASTIC FILAMENTS PHYSICAL REVIEW E64 061802
of the buckles leads to an increase in the average w
length, manifested as at1/4 power law for a broad range o
the intermediate times. The growing wavelike buckles
three dimensions organize into helical domains, which
separated by domain boundaries that may be viewed as
perfections within the helical structure. The energy asso
ated with the boundary imperfections is relaxed by diffus
of the imperfections from the system, thus the helical cor
lation length increases until the structure is a pure helix.

The development of helices generates a drift motion in
center-of-mass displacement of the expanding structure.
rate of self-propulsion depends on the structure of the
panding body, the rate of relaxation, and the net amoun
helicity in the chain. Figure 5 shows the displacement of
center of mass during the expansion process. The dyna
of the motion is clearly rather complex. In particular, acc
erated motion takes place during the rapid developmen
the buckling waves. The late stage motion appears to
linear and is probably due to the self-propulsion genera
during the relaxation of the one single helix.

In order to clearly show the formation of a helical buckl
conformation, we have performed simulations where the
tial condition is seeded with a preferential perturbation alo
one of the two transverse directions. Specifically, we set
y component of the initial transverse perturbation to a si
soidal wave with an amplitude of 0.1l 0 and with a wave-
lengthl0 , the fastest growing wavelength determined fro
the linear stability analysis~see next section!. Thez compo-
nent of the initial perturbation is set to a random fluctuat
with an amplitude of 0.01l 0. The time evolution of the two
minor axes is shown in Fig. 6. The separation of the t
minor axesR2 and R3 at the beginning of the expansio
process reflects the favoring of they component. The two
magnitudes increase parallel to each other untilR2 has ex-
panded to a threshold value, at which pointR2 levels off.
The smaller minor axisR3 catches up to the larger mino
axis R2. Thereafter, they continue to increase; however,

FIG. 5. Time evolution of the center-of-mass displacem
(^(DRc)

2&1/25^@Rc2Rc(t50)#2&1/2) during the expansion pro
cess.
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two radii become roughly equal. The structure at this po
becomes clearly helical, as confirmed by direct visualizat
of the chain configuration. The helical conformation min
mizes the bending energy by distributing a constant cur
ture over the length of the elastic chain.

IV. LINEAR STABILITY ANALYSIS AND DYNAMIC
SCALING

In this section, we perform a linear stability and scali
analysis with the goal of obtaining a physical understand
of the results presented in the previous section. We first a
lyze the early stage dynamics that focuses on the initial
pansion of the chain in the longitudinal direction and t
development of the buckling wave. We then use a sim
energy argument to understand the driving force for the f
mation of helices. Finally, we use scaling analysis to rat
nalize the observed intermediate and long time scaling
havior of the various quantities.

At the early stage of the expansion, the chain is ess
tially straight with small transverse perturbations. It is the
fore convenient to decompose the chain configuration i
longitudinal and transverse components, with the longitu
nal axis parallel to the initial orientation of the chain. W
define a longitudinal deformationu(s) through rL5@s

1u(s,t)# x̂, whererL is the longitudinal position of the chain
backbone at internal coordinates. Note here that the longi-
tudinal deformation is defined with respect to the initial eq
librium position of the chain. The transverse deformati
RT(s) at s is simply the deviation from the initial chain axis
The equations of motion for these components are obta
in a manner similar to Eq.~7! taking special care to maintai
the dimensions in the continuous model. They are

j
]u

]t
52k

]e

]s
2e l 0

2 ]

]s H 1

g

]

]sF 1

g2

]

]s S 1

g

]~s1u!

]s D G J ,

~13!

t FIG. 6. Early stage time evolution of the minor axesR2 (n) and
R3 (,). This simulation seeds one transverse direction with
unstable wavelengthl0 of amplitude 0.1l 0 and the other transvers
direction with random perturbation of amplitude 0.01l 0.
2-5
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j
]RT

]t
52k

]

]s S e
]RT

]s D2e l 0
2 ]

]s H 1

g

]

]sF 1

g2

]

]s S 1

g

]RT

]s D G J .

~14!

The early stage dynamics is dominated by the comp
sion energy. Since the initial conformation is essentia
straight, the beads move in the longitudinal direction as
they are confined to move in one dimension. Ignoring
transverse components leads to the following simplifi
equation of motion for the longitudinal deformation

j
]u

]t
5k

]2u

]s2
. ~15!

It is convenient to define the internal coordinates
P@2L0/2,L0/2#. This equation is supplemented by the fin
valueu(s,`)5(g021)s5e0s and the zero strain boundar
conditions at the two chain ends. The solution can be rea
obtained as an eigenfunction expansion that reads

u5e0s2
e0L0

p2 (
p50

`
~21!p

S p1
1

2D 2 sinF2pS p1
1

2D s

L0
G

3expF24p2kS p1
1

2D 2 t

jL0
2G . ~16!

Equation~16! defines a set of relaxation times for the eige
modes. In particular, a ‘‘Rouse-like’’ time associated with t
slowest longitudinal relaxation mode can be identified
t long5jL0

2/(p2k).
Using Eq.~16!, we obtain the evolution in the radius o

gyration for a chain expanding in one dimension. For sh
times, the change in the radius of gyration is given by

Rg2Rg~ t50!5A 1

L0
E

2L0/2

L0/2

~s1u!2ds2
L0

2A3

'
2A3ke0

jL0
t

5L0e0

2A3

p2

t

t long
. ~17!

This predicted linear behavior is in perfect agreement w
the simulation result shown in Fig. 3.

The one-dimensional configuration of a chain with inte
nal compressional strain is unstable with respect to sm
transverse perturbation. The initial instability can be und
stood through a simple linear stability analysis. Represen
the transverse perturbation as a sinusoidal wave with w
numberk, RT;Ak exp(iks), and substituting it into the equa
tion of motion, Eq.~14!, we find that the amplitude of the
perturbation Ak will grow for k’s in the range uku
,e0

1/2(k/e)1/2/ l 0. The most unstable~i.e., fastest growing!
mode is that withk056e0

1/2(k/e)1/2/(A2l 0), corresponding
06180
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to a wavelengthl0 of 2p l 0@ke0 /(2e)#21/2. The most un-
stable mode predicted from the linear stability analysis d
not favor they or z directions, nor does it favor the cosine o
sine contributions. This suggests that the transverse pe
bations in the two unexplored dimensions initially are ind
pendent of each other. However, statistically, the amplitu
of the most unstable mode is equivalent in these two dim
sions.

The linear stability analysis predicts an exponent
growth of the most unstable mode at a rate oft0

21

5k2e0
2/(4l 0

2je), thus the transverse displacement becom
significant whent;t0 . This time therefore signals the te
mination of the one-dimensional growth dominated by t
compression energy. This is shown clearly as the end of
plateau in the compression energy in Fig. 2, and the de
tion from linear growth in the radius of gyration of the maj
axis ~Fig. 3!. This time also correlates well with the onset
scaling behavior in other properties.

The expanding transverse buckles force the bending
ergy to overcome the compression energy at timest.t0 .
The growing wavelike structure locally conforms to a pa
between a planar wave and a helix. The three-dimensio
buckled structure relaxes by following the steepest desc
on the potential energy surface. We now show that the be
ing energy favors organization of the buckles into helices.
this end, we focus on the bending energy contribution in
segment of the chain spanning a single period of wavelen
l0 . Since the longitudinal expansion requires an orch
trated motion of the entire chain, the transverse buckles g
outward without appreciably spreading longitudinally. Thu
for the present purpose we keep the longitudinal distanc
this chain segment fixed, so that chain expansion occurs
through the growth of the buckling wave in the transve
directions. We represent the distortion of the chain by
suming

r5X~s!x̂1Dr y sin~k0s!ŷ1Dr z cos~k0s!ẑ, ~18!

subject to a given swelling ratioudr /dsu5g, with g varying
between 1 and 1.5 corresponding to the initial and fi
length of the chain, respectively. Note that either the sine
cosine part in the above equation corresponds to a t
dimensional wave, whereas when both sine and cosine
present with equal coefficients, we obtain a perfect he
Therefore, we plot the bending energy as a function
@Dr y2Dr z#/l0; the result is shown in Fig. 7. It is clear tha
the helical structure is an energy minimum at all values og
~representing a time progression in the expansion!, reflecting
the tendency of the wavelike structure to assume a con
mation of constant curvature. The energy difference betw
the helix and a two-dimensional deformation increases w
increasing swelling ratio and approaches zero as the swe
ratio approaches one, the latter being consistent with the
of a transverse directional preference of the buckling p
dicted by the linear stability analysis. Thus the formation
helices is a nonlinear effect.

As the wavelike deformations grow in the transverse
rection, the driving force for coalescing into a helical co
formation increases. The handedness of a helix is dictate
2-6
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the sign of the local torsiont. The random initial perturba
tion does not favor one over the other. However, becaus
the continuity of the space curve, correlation develops as
chain expands so that the local torsion persists over a le
lH . The result is a helical structure with helical domains
lengthlH , which are separated by kink domain boundari

The dynamics for the intermediate timest f.t.t0, where
t f is a terminal relaxation time scale to be obtained later
characterized by power law dependence in a number of p
erties. To understand the observed scaling behavior, we
form a scaling analysis, following similar arguments given
Refs.@3,12# in the study of compressed rods and membran

We choose a transverse displacement scaleRT , ignoring
for the present purpose the difference betweenR2 and R3.
The longitudinal deformation is characterized by the incre
of the length along the major axisDR1, which scales simi-
larly to the displacementu introduced at the beginning o
this section. The length scale for the bending deformatio
the wavelength of the bucklesl and that for the longitudina
displacement isL0. The fact that the contour length increas
will be accounted for by the leading dependence in long
dinal strain, but otherwise has little effect.

We start with the scaling behavior for the buckling wav
length l. The driving force for buckling is due to both th
compression energy and the bending energy. Assuming
the two driving forces contribute roughly equally, we hav
from the transverse equation of motion@Eq. ~14!#,

j
RT

t
;k

eRT

l2
;e l 0

2 RT

l4
. ~19!

The above relation can be rewritten using the initial str
e0[g021, and the wavelengthl0 and time scalet0

54l 0
2je/@k2e0

2# identified from the linear stability analysis
as

FIG. 7. Bending energy for a single period wavelike distortio
The amplitudesDr y andDr z correspond to the relative contributio
of the sine component and the cosine component respectively.
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t0RT

t
;

eRTl0
2

e0l2
;

RTl0
4

l4
. ~20!

It can be readily seen that the buckling wavelength sca
as l;l0(t/t0)1/4. The internal strain is seen to scale ase
;e0(t/t0)21/2. Substituting the internal strain into the com
pression energy yieldsUcom;k(L0 / l 0)e0

2(t/t0)21.
To understand the scaling behavior of the increase in

length along the major axis of the rod, we analyze the g
erning equation for the longitudinal motion@Eq. ~13!#. This
analysis requires careful consideration of the appropr
length scales. The contribution of the compression energ
relatively unaffected by the presence of transverse buck
therefore, the proper backbone length scale for the comp
sion energy isL0, leading to

j
DR1

t
;k

e

L0
. ~21!

Using the scaling for the internal straine, we obtain the
scaling for the longitudinal displacementu as

DR1;k
e0t1/2t0

1/2

jL0
;S t

tbend
D 1/2 l 0

2

L0
, ~22!

where the last expression results from using the express
for t0 andtbend5j l 0

2/e. This accounts for the observedt1/2

power law increase in the major axis shown in Fig. 3.
The scaling behavior forRT shown in Fig. 3 can be un

derstood by going back to the expression for the inter
strain that consists of both longitudinal and transverse c
tributions

e5e02
]u

]n
2

1

2 S ]RT

]n D 2

;e02
DR1

L0
2

RT
2

l2
. ~23!

For t.t0 the strain becomes negligible compared to ea
individual term on the right hand side of the equation. Th
we can obtain the scaling behavior forRT by balancing the
three terms on the right. Assuming for the moment that
can ignore theDR1 /L0 term, we have

RT;e0
1/2l;e0

1/2l0S t

t0
D 1/4

, ~24!

which is in agreement with the power law behavior in Fig.
Combining the scaling forRT and l, we obtain the
scaling for the bending energyUbend;e l 0L0RT

2/l4

;ke0
2(L0 / l 0)(t/t0)21/2. The power law behavior ofRT @Eq.

~24!# terminates when the second term in Eq.~23! DR1 /L0 is
no longer negligible, and this happens when

DR1;e0L0 ~25!

or

t;t f;tbende0
2S L0

l 0
D 4

. ~26!

.

2-7
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t f thus defines the terminal relaxation time when the rod
approached its final equilibrium length. This terminal rela
ation time can also be obtained as the time required for
wavelength of the buckles to reach the full length of the r
Settingl;L0, we have

t f;tbendS L0

l 0
D 4

, ~27!

which apart from some numerical factor is identical to t
scaling expression Eq.~26!. We note that this relaxation tim
is nothing but the transverse relaxation time for a semifl
ible polymer@13,14#. Interestingly, the relaxation time ass
ciated with the longitudinal relaxation@Eq. ~16!# does not
play an explicit role in our study. This is because buckli
appears long before this relaxation time is reached since

t0

t long
;

4e l 0
2

ke0
2L0

2
!1. ~28!

The time scalet long becomes obliterated once bucklin
waves dominate the relaxation dynamics. This inequality
fact specifies the condition under which the free expans
problem exhibits similar transverse buckling to that in
compressed rod with fixed ends. This condition reflects
significantly larger resistance associated with longitudinal
laxation than that associated with transverse buckling. If
parameters are altered such thatt long;t0, then even though
the transverse buckling instability may still exists@15#, the
buckling waves will not be able to grow to any significa
extent since the driving force for buckling will have bee
dissipated through longitudinal relaxation. For an elastic
made of isotropic material, this will be the case if the init
strain is less or comparable to the inverse of the aspect
of the rod.~This result can be obtained by substituting t
explicit dependence of the bending and compression mo
on the diameter of the rod and on the Young’s modulus
the materials.! For long rods with large strain, the scenar
we have presented in this study will prevail.

The increase of the helical persistence lengthlH is nec-
essarily slower than that of the wavelengthl. The wave-
lengthl grows by two modes of relaxation. It grows inte
nally at the helical domain boundaries; two helices meet
eliminate one another by turning the imperfection around
axis of orientation. This process increases the wavelen
without effecting the length of the two helical domains. T
wavelength also grows at the chain ends by turning the
helices around the axis of orientation. This process increa
both the wavelength and the helical domain length. The
lical persistence length grows at a slower rate than the wa
length because the helical domains grow only by diffusion
writhe out of the ends, and the wavelength grows by b
internal relaxation and unwinding at the ends. The physic
the relaxation of twopreexistingcompeting helical structure
has recently been analyzed for a chain of fixed length
bending/twisting degrees of freedom@16#. Two types of im-
perfection front propagation are identified: ‘‘crankshafting
where one helix spins around the axis of the other at
chain end~end dissipation!, and ‘‘speedometer-cable mo
06180
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tion,’’ where each helix revolves around their own axis~in-
ternal relaxation!. These modes of front propagation are co
sistent with our description of domain relaxation; howev
our problem is complicated by the existence of many d
mains of helicity, and these two modes occur simultaneou
during the free expansion process. Also, the helices stu
in Ref. @16# correspond to energy minima in a bistable sy
tem, while the helices appearing in our study are trans
structures that arise spontaneously during the relaxation
cess in a system lacking an obvious propensity for hel
formation. The apparentt1/6 growth inlH observed here is a
result of a rather complex relaxation mechanism that rema
to be investigated further.

Finally, we discuss the effects of neglecting thermal flu
tuation in our study. To this end, we compare the therm
energy with the compression and bending energies. Since
compression energy decays faster than the bending ene
thermal fluctuation is expected to affect the system beha
when Ucom;NkBT. Since Ucom;kNe0

2(t/t0)21, the two
energies become comparable whent5tT;(k/kBT)e0

2t0.
For our choice of parameters and assuming room temp
ture,k/kBT'6N2; thus we estimate thattT;104t0. On the
other hand, the bending energy remains much larger than
thermal energy until well past the terminal relaxation tim
t f . Thus thet21/2 decay in the bending energy shown in Fi
2 will be unaffected by the thermal fluctuation, while thet21

decay in the compression energy will reach a plateau va
corresponding to the thermal energy of the rod att;tT .
However, since the scaling behavior of most of the prop
ties studied in this work is determined by the bending e
ergy, thermal fluctuation has little effect on these propert
Interestingly, we find from separate calculations that
cluded Brownian forces, that even thet1/2 growth in the
length of the major axis~which is expected to be affected b
the compression energy! persists well past the time when th
compression energy reaches a plateau.

We note that there are many situations in which therm
fluctuation plays an essential role in the dynamics of a se
flexible polymer. Stress relaxation in semiflexible polyme
is an example that has attracted considerable attention in
cent years@13,14,17,18#. Similarly, the propagation of ten
sion upon pulling a semiflexible polymer by one end
shown to depend crucially on the thermal fluctuation sp
trum in the initial configuration@19#. While the inclusion of
thermal fluctuation in our work would undoubtedly be mo
realistic and would lead to slight modifications in the beha
ior of some properties, we have chosen to focus our atten
on situations where relaxation is driven by large mechan
energies and hence the omission of thermal fluctuation
justified.

V. CONCLUSIONS

The free expansion of an elastic filament progresses a
the energetic path of least resistance, notably marked by
emergence of the transverse buckling, which occurs to
tribute the energy between compression and bending.
wavelike buckles grow as a coarsening process until
wavelength reaches the full length of the chain, at wh
2-8
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point the chain relaxes back to its equilibrium straight co
formation. The buckles expand in the transverse direc
and prefer to assume a helical orientation due to a nonlin
effect, which is not predicted by linear stability analysis. A
though the energetically preferred conformation as the tra
verse displacement grows is a pure helix~single handed-
ness!, the local handedness is determined by the lo
torsion; therefore, the wavelike buckles coalesce into hel
domains separated by kink imperfections, which are eli
nated from the expanding body by diffusion from the cha
ends. The helical domains grow until the relaxing conform
tion achieves a pure helical orientation, where the hand
ness is determined by the orientation of statistical do
nance.

The relaxing helix undergoes self-propulsion, which
similar in nature to the propulsive motion of flagellate
micro-organisms, as it strives to achieve the minimum
ergy, straight conformation. The existence of domains
handedness in the expanding structure extends the com
son between our problem and micro-organism propuls
since some bacterial flagella employ competition betw
structures of opposite chirality to drive motion@16#. The dy-
namics of the drift motion of the entire chain is rather co
plicated due to the structural complexity of the relaxi
body; therefore, a scaling analysis of the center-of-mass
tion from the dynamic equations of motion would not pro
effective. Furthermore, in the case of flagellated mic
organisms, an important contributing factor toward the r
of self-propulsion is the effect of chain twisting on the h
drodynamic behavior of the elastic rod@4#. We have ana-
lyzed the structure of the freely expanding rod and predic
that self-propulsion is an interesting consequence of
higher order structure that is established during the re
ation process. However, to quantify the center-of-mass
placement, the additional twist degree of freedom should
included in the elastic rod model@20–22#.

The expansion dynamics present an interesting prob
of symmetry breaking where the system breaks symmetr
two ways. The straight rod spontaneously buckles in
transverse direction and the wavelike buckles further or
m

ll

s

s
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nize into helical domains of common handedness. T
former symmetry breaking occurs to preferentially distribu
the energy between bending and compression, rather
dissipating the energy through compression alone. Ene
redistribution during the relaxation process is common
problems of stress dissipation. Similar to expanding rods,
expansion of compressed membranes exhibits transv
buckling in order to alleviate the compression energy@12#.
Similarly, when an elastic cube is stressed through inw
pointing forces at the cube vertices, the cube buckles al
the cube edges@23#. An initially twisted rod may unwind the
twist density via ‘‘geometric untwisting,’’ where twist is
converted to writhe, and stress is dissipated through d
motion of the chain backbone@20#. This process, in which
energy is redistributed between twist and bending, is ob
ously analogous to the free expansion problem we st
here. This mode of relaxation, however, is the domin
mechanism only when the moment about the twisted ch
generated by the torsional deformation cannot overcome
rotational resistence. Thus there is a further similarity b
tween the relaxation of twist deformation and the free exp
sion of elastic filaments, as in both systems redistribution
energy through instability occurs only under certain con
tions.

A recent theoretical analysis of DNA condensation@24#
suggests that the chain collapse occurs via an Euler buck
instability, thus partitioning the total energy into bending a
electrostatic energy. Our analysis of the freely expanding
provides insight into the existence of higher order struct
within the buckle phase; therefore, if the chain collapse
curs through a similar instability, it is likely that the conden
ing DNA strand also contains helical domains. We are int
ested in analyzing the effect of helicity on the chain collap
dynamics and determining its role in the morphology of t
condensed DNA strand.
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